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Введение
Гравитационное линзирование - явление отклонения электромагнитных волн
под действием гравитационного поля. Первое теоретическое описание грави-
тационного линзирования возникло в конце XVIII - начале XIX века с появле-
нием корпускулярной теории света и основывалось на ньютоновской теории
гравитации, рассматривая отколнение лучей как гиперболическое движение
фотонов в поле тяготения. Полученное таким способом значение угла откло-
нения, однако, составляет лишь половину от истинного, поскольку не учи-
тывает искривление пространства [10]. Экспериментальное наблюдение Эд-
дингтоном линзирования Солнцем звезд во время затмения, давшее именно
удвоенный угол, стало одним из самых убедительных доказательств верности
теории относительности.

С начала XX века, когда появились достаточно точные инструменты на-
блюдения, астрономы обнаруживали расхождение между теоретическими кри-
выми вращения галактик, полученными на основе распределения звезд, и на-
блюдательными данными. Существует несколько гипотез, объясняющих это
явление, но наиболее эффективной с 80-х годов [6] является гипотеза тем-
ной материи - небарионного вещества, отвечающую за большую часть массы
Вселенной. Предполагается, что темная материя состоит из массивных ча-
стиц, участвующих только в гравитационном и слабом (либо еще каком-то
более слабом) взаимодействиях (Weakly Interacting Massive Particles, WIMP).
ПосколькуWIMP не взаимодействуют с электромагнитным излучением непо-
средственно, прямое наблюдение темной материи невозможно. Предлагается
множество косвенных методов наблюдения, включая поиск излучения, обра-
зующегося при аннигиляции частиц темной материи [2], но наиболее точным
методом изучения распределения темной материи на сегодняшний день яв-
ляется исследование ее гравитационного поля. Современные компьютерные
симуляции предсказывают наличие у гало галактик внутренней структуры
и неоднородностей плотности. Одним из способов проверки этих гипотез яв-
ляется анализ гравитационного линзирования объектов фона [11]. В работе
оценивается возможность обнаружения такого линзирования в данных обзо-
ров неба.
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1 Гравитационное линзирование

1.1 Уравнение линзы
Общая теория относительности дает значение угла отклонениня для точечной
массы M

|~̂α| = 4GM

c2R
(1.1.1)

где R - расстояние от массы в плоскости линзы, параллельной плоскости
наблюдения. Поскольку ~̂α линейно зависит от R, угол отклонения системы
точечных масс является линейной суперпозицией углов отклонения для каж-
дой точки.

В случае астрономических объектов, в особенности на галактических мас-
штабах, когда линейные размеры системы Наблюдатель-Линза-Источник
много больше размеров линзы, можно перейти к приближению тонкой лин-
зы, заменив объемную плотность ρ(~ξ) на поверхностную плотность Σ(~ξ) =∫
ρ(~ξ, z)dz, где ~ξ - вектор в плоскости линзы L, перпендикулярной лучу

Наблюдатель-Линза.
Определим теперь источник, имеющий радиус-вектор ~η в плоскости источ-

ника S, параллельной L. Луч, испущенный этим источником и пересекающий
L в ~ξ, отклонится на угол

~̂α(~ξ) =
4G

c2

∫
(~ξ − ~ξ′)Σ(~ξ′)

|~ξ − ~ξ′|2
d2ξ′

Обозначим расстояния от наблюдателя до L, от наблюдателя до S и от L до
S как DL, DS и DLS соответственно. Введем соответствующие ξ и η углы θ и
β, отсчитываемые от луча Наблюдатель-Линза (1). Считая углы малыми
(что правомерно для рассматриваемых систем), получаем уравнение линзы:

~θDS = ~βDS + ~̂αDLS. (1.1.2)

Рис. 1: Геометрическая схема линзирования в приближении плоской линзы
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Перейдя к приведенному углу отклонения

~α(~θ) ≡ DLS

DS
~̂α(~θ),

получаем
~β = ~θ − ~α(~θ) (1.1.3)

Вычисления, однако, удобнее всего вести в безразмерной форме. Нормируем
вектор ~ξ на некоторый масштаб ξ0: ~x =

~ξ
ξ0
. Аналогично, ~y = ~η

η0
, где η0 = ξ0DS

DL
.

Приведенный угол отклонения в новых обозначениях имеет вид

~α(~x) =
DLDLS

ξ0DS
~̂α(ξ0~x) (1.1.4)

Наконец, безразмерное уравнение линзы имеет вид

~y = ~x− ~α(~x) (1.1.5)

1.2 Линзирующий потенциал
Для описания протяженных линз введем понятиe потенциала линзирования
как нормированной проекции ньютоновского гравитационного потенциала си-
стемы на плоскость L:

Ψ̂ =
DLS

DLDS

2

c2

∫
Φ(DL

~θ, z)dz (1.2.1)

и его безразмерную версию

Ψ =
D2
L

ξ2
0

Ψ̂ (1.2.2)

Ψ обладает несколькими свойствами:
(1) его градиент равен приведенному углу отклонения: ~∇xΨ(~x) = ~α(~x)
(2) его лаплассиан равен ∆xΨ(~x) = 2k(~x), где

k(~x) ≡ Σ(~x)

Σcr
(1.2.3)

- сходимость (безразмерная поверхностная плотность),

Σcr =
c2

4πG

DS

DLDLS
(1.2.4)

- критическая поверхностная плотность, являющаяся характеристикой систе-
мы.
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1.3 Аксиально симметричные линзы
Рассмотрим класс линз, распределение массы в которых симметрично отно-
сительно оси Наблюдатель-Линза. В таком случае Σ(~ξ) = Σ(|~ξ|). Разбив
вектор ~ξ−~ξ′ на параллельную и ортогональную относительно ~ξ компоненты и
найдя соответствующие компоненты угла отклонения, получим, что полный
угол равен

α̂ =
4GM(ξ)

c2ξ
(1.3.1)

Из уравнений (1.1.4), (1.3.1) и (1.2.4) получаем

α(x) =
m(|x|)
x

, (1.3.2)

где m(|x|) ≡ M(ξ0|x|)
πξ20Σcr

- безразмерная масса. Уравнение линзы в таком случае
имеет вид

y = x− m(|x|)
x

(1.3.3)

1.4 Изображения
Рассмотрим протяженный источник, угловой размер которого много меньше
углового размера линзы. Тогда для него можно составить якобиан отображе-
ния

A ≡ ∂~y

∂~x
=

(
δij −

∂αi(~x)

∂xj

)
=

(
δij −

∂2Ψ(~x)

∂xi∂xj

)
(1.4.1)

где xi это i-я компонента вектора ~x в плоскости линзы.

Обозначим ∂2Ψ(~x)
∂xi∂xj

= Ψij.
Вычтем из матрицы A диагональную часть:

(
A− 1

2
trA · I

)
ij

= δij −Ψij −
1

2
(1−Ψ11 + 1−Ψ22)δij

= −Ψij +
1

2
(Ψ11 + Ψ22)δij

=

(
−1

2(Ψ11 −Ψ22) −Ψ12

−Ψ12
1
2(Ψ11 −Ψ22)

)
Полученная бесследовая антисимметричная матрица называется матрицей
сдвига и описывает искажение изображения гравитационным полем.
Введем псевдовектор сдвига ~γ = (γ1, γ2) такой, что

γ1(~x) =
1

2
(Ψ11 −Ψ22)

γ2(~x) = Ψ12 = Ψ21
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Тогда существует такой поворот системы на угол φ, что(
γ1 γ2

γ2 −γ1

)
= γ

(
cos 2φ sin 2φ
sin 2φ − cos 2φ

)
γ =

√
γ2

1 + γ2
2

Диагональная часть якобиана равна

1

2
trA =

[
1− 1

2
(Ψ11 + Ψ22)

]
δij

=

(
1− 1

2
∆Ψ

)
δij = (1− k)δij

Таким образом, якобиан имеет вид

A = (1− k)I− γ
(

cos 2φ sin 2φ
sin 2φ − cos 2φ

)
(1.4.2)

Первое слагаемое (сходимость) в этой сумме отвечает за масштабирование,
однородное растяжение или сжатие изображения, а второе (сдвиг) за рас-
тяжение вдоль определенного направления (определяемого псевдовектором
сдвига). В частности, круглый источник малого размера будет преобразован
в эллипс.

Поскольку суммарный световой поток сохраняется, а телесный угол, от
которого он приходит, изменяется, яркость изображений увеличивается (или
уменьшается) по сравнению с источником. Коэффициент усиления, очевидно,
равен

µ ≡ detM =
1

detA
=

1

(1− k)2 − γ2
(1.4.3)

где M называется тензором усиления. Уравнение

(1− k)2 − γ2 = 0 (1.4.4)

задает две критические кривые, на которых усиление формально бесконечно:
радиальную (1− k + γ = 0) и тангенциальную (1− k − γ = 0). Изображения
вблизи радиальной кривой растягиваются поперек нее, а изображения вблизи
тангенциальной кривой растягиваются вдоль нее.
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2 Темная материя в Галактике

2.1 Профиль Наварро-Френка-Уайта
Первые попытки описать распределение темной материи в галактиках и скоп-
лениях использовали модель изотермической сферы, описывающей вещество
галактики как идеальный газ в термодинамическом равновесии. При таком
подходе вне центрального ядра постоянной плотности плотность ρ ∝ r−2, где
r это расстояние до центра системы.

С появлением мощных компьютеров стало возможным детальное моде-
лирование структуры и эволюции звездных систем, что позволило получить
более точное математическое описание распределения массы в галактиках.
К середине 1990-х накопилось большое число нестыковок и противоречий в
результатах моделирования, свидетельствовавших, что модель изотермиче-
ской сферы неудовлетворительна. В 1995 году публикуется статья Джулио
Наварро, Карлоса Френка и Саймона Уайта [5], в которой предлагалается
новая модель, получившая название “профиль Наварро-Френка-Уайта”:

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
, (2.1.1)

где rs и ρs - масштабный радиус и характеристическая плотность конкретного
объекта. Это распределение дает (при ξ0 = rs) следующее выражение для
поверхностной плотности [10]:

Σ(x) =
2ρsrs
x2 − 1

f(x), (2.1.2)

где

f(x) =


1− 2√

x2−1
arctg

√
x−1
x+1 (x > 1)

1− 2√
1−x2 arcth

√
1−x
x+1 (x < 1)

0 (x = 1).

Соответствующий приведенный угол отклонения

α(x) =
4ks
x
h(x), (2.1.3)

где
ks ≡ ρsrsΣ

−1
cr (2.1.4)

и
h(x) = ln

x

2
+ 1− f(x) (2.1.5)

Соответствующее уравнение линзы имеет два режима. При малых y имеет-
ся три решения - одно слегка смещенное относительно y и два по другую
сторону оптической оси. С увеличением y “отрицательные” решения сбли-
жаются, а затем сливаются и исчезают, оставляя только одно изображение.
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Эти режимы называются сильным линзированием и слабым линзированием
соответственно.

(a) Сильное линзирование (b) Слабое линзирование

Рис. 2: Режимы решений уравнения линзы для ks = 0.5

(a) ks = 0.5 (b) ks = 0.1

Рис. 3: Зависимость вида решения от величины характеристической сходи-
мости

2.2 Темные гало
Уже в статье Наварро, Френка и Уайта было отмечено, что количество тем-
ной материи в карликовых галактиках аномально высоко. Более поздние ис-
следования и наблюдения подтверждают это [9]. Логично предположить, что
должны существовать объекты, по массе сравнимые с карликовыми галак-
тиками или менее массивные, в которых барионного вещества, а тем более
звезд, так мало, что обнаружить их с помощью прямых наблюдений почти
невозможно. Такие объекты (темные гало или субгало) должны были обра-
зовываться в значительных количествах при формировании галактик [8], по-
скольку неоднородности малого масштаба начали схлопываться раньше, чем
большого. Теоретически, такие сгустки темной материи могут иметь массы
от субзвездных до 1010M�. Действительно, высокоточные симуляции форми-
рования галактик типа Млечного Пути показывают, что хотя большинство
массивных субгало к настоящему моменту почти полностью “растворены” в
однородной части гало в результате потери массы за счет взаимодействия
друг с другом и с центральной частью Галактики, число ядер темной мате-
рии с массами порядка 107M� и выше, особенно во внешних областях, все
равно в два-три раза превышает [7] число наблюдаемых карликовых спутни-
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ков Галактики.

Основные надежды в поисках субгало возлагаются на обнаружение гамма-
лучей, порождаемых при аннигиляции частиц темной материи [2]. Однако
крупные субгало должны помимо этого оставлять следы в виде гравитацион-
ного линзирования объектов фона, например галактик или крупных звездных
скоплений в Местной группе. Поскольку масса и размер темных гало доста-
точно малы, а размеры оптической системы относительно невелеки, харак-
терестическая сходимость настолько мала (ks � 1), что для них реализуется
только слабое линзирование, то есть изображение фонового источника лишь
несущественно искажается, но не возникает дополнительных изображений
или заметных дуг, что серьезно затрудняет поиски.

Рассчеты показывают [1], что большие оси субгало направлены в основном
в сторону галактического центра, что, вообще говоря, означает, что для про-
извольного гало использование аксиально симметричной модели при наблю-
дении с Земли неправомерно. Однако согласно компьютерным симуляциям
субгало в среднем обладают высокой сферичностью [1], а значит по крайней
мере в режиме слабого линзирования можно спокойно использовать профиль
Наварро-Френка-Уайта для сферически симметричной линзы.

Используя известные диапазоны значений концентраций и масс субгало
[3], а также порядок больших полуосей их орбит, можно получить оценку
разрешающей способности, необходимой для обнаружения линзирования в
идеализированном случае, что и сделано ниже.

3 Оценка смещения изображений
В распределении Наварро-Френка-Уайта

ρs = δcρc

ρc =
3H2

8πG

δc =
200

3

c3

ln (1 + c)− c
1+c

rs =
r200

c

r200 =
3

√
GM200

100H2

Здесь ρc - критическая плотность Вселенной, r200 - радиус, внутри которого
средняя плотность вещества в 200 раз выше критической, H - Хаббловский
параметр, G - гравитационная постоянная.
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Отсюда

ks =
ρcδcrs
Σcr

=
DLDLS

DSc2
0

10Hc2

ln (1 + c)− c
1+c

3
√

10GHM200 (3.0.1)

где c0 - скорость света.
При M200 = 107M�, DL = 0.25Mpc, DS = 2.5Mpc, c = 10, H = 2 · 10−18sec−1

имеем ks ∼ 10−6 и rs ∼ 1019m.
Определим смещение ∆ как расстояние на плоскости L, на которое сдвигается
изображение источника в результате линзирования. В безразмерном виде

∆ = |y − x| = |α(x)| (3.0.2)

(a) Пример смещения изображения (ks = 0.5,
ycentre = 2.4) (b) Зависимость смещения от x при малых y

(ks = 10−6)

При этом угловое смещение будет равно

∆Θ =
ξ0

DL
∆ =

rs
DL

∆ (3.0.3)

Очевидно, что для обнаружения линзирования смещение должно как мини-
мум превышать разрешающую способность телескопа.
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Рис. 5: Зависимость углового смещения от расстояния до субгало и концен-
трации при y ' 0.001

Для объектов массой порядка 107M� значения углового смещения состав-
ляют порядка 10−9 радиана или 10−4 угловой секунды. Для более массив-
ных и плотных субгало угловое смещение может достигать нескольких сотых
секунды дуги, что технически находится в области доступности для совре-
менных телескопов [14]. Тем не менее, вероятность обнаружить темное гало
таким способом мала. Во-первых, число субгало массой не меньше 107M� в
гало Млечного пути оценивается в несколько сотен, а поскольку число суб-
гало с увеличением массы убывает по степенному закону [2], то массивные
объекты составляют от этого количества лишь небольшую долю. Во-вторых,
то, что такой объект окажется практически точно на линии наблюдения под-
ходящего источника, крайне маловероятно ввиду малых угловых размеров и
небольшого количества объектов. Таким образом, ожидать обнаружения суб-
гало в Млечном пути по слабому линзированию по крайней мере в ближайшее
время не стоит.

4 Заключение
В работе получена порядковая оценка смещения изображений, вызываемого
линзированием на предполагаемых неоднородностях темной материи в гало
Млечного пути в приближении сферической модели Наварро-Френка-Уайта.
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Полученные значения показывают, что наблюдение непосредственного лин-
зирования на субгало рассматриваемой категории представляется маловеро-
ятным, хотя и возможным.
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